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Abstract—A great deal of attention from various scientific
communities has been recently drawn to complex network
systems (CNSs), with many profound results established in this
active research field. This article provides a state-of-the-art sur-
vey on coordination and control of CNSs with switching network
topologies, with emphasis on relationships between the switchings
among different topology candidates and the network control-
lability, and between the switchings among different topology
candidates and the emergence of coordination behaviors (includ-
ing synchronization, consensus, and containment) of such CNSs.
First, some fundamental properties of CNSs and the essentials
of analytical methodologies for the stability of the fixed point of
switched dynamical systems are briefly reviewed. Then, network
controllability and the emergence of coordination behaviors of
CNSs with switching topologies and the corresponding analytical
approaches are discussed in detail, where some of the existing
results along these topics are presented in a tutorial-like fashion.
This article ends by presenting some interesting future research
topics on the coordination and control of CNSs with switching
topologies.

Index Terms—Controllability, distributed coordination, fast
switching, slow switching, switching topology.

I. INTRODUCTION

FAR FROM being separate entities, many social and
engineering systems can be considered as complex

network systems (CNSs) associated with tight interactions
among neighboring entities within them [1]–[4]. Prototypical
examples include scientific collaboration networks, the
Internet, power grids, multiple unmanned aerial systems, and
various biological networks, to name just a few.
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Roughly speaking, a CNS refers to a networking system that
is made up of lots of interactional individuals and could exhibit
fascinating collective behaviors that cannot be anticipated
from the inherent properties of the individuals themselves.
Conceptually, the CNSs discussed in this article include com-
plex dynamical networks (CDNs) and multiagent systems
(MASs) as special cases. A lot of new research challenges
have been raised about understanding the emergence mecha-
nisms responsible for various coordination behaviors as well
as global statistical properties of CNSs [5], [6]. Network sci-
ence, as a strong interdisciplinary research field, has been
established at the first ten years of 21st century [5]–[12]. It is
increasingly recognized that a detailed study on controllabil-
ity and coordination of CNSs would not only help researchers
understand the evolution mechanism for macroscopical coor-
dination behaviors, such as flocking and synchronization but
also prompt researchers to utilize theoretical results in network
science to solve various engineering problems, e.g., design of
distributed sensor networks [13], formation control of multiple
robots [14], distributed localization [15], and load assignment
of multiple energy storage units in modern power grid [16].

Critical issues arising in coordination and control of CNSs
include network controllability analysis [9]–[11], synchroniza-
tion control of CDNs [12], [17]–[21], distributed consen-
sus [22]–[26], and containment control [27], [28] of MASs.
Specifically, network controllability describes our ability to
drive the states of each individual within the networking
systems from any initial states to any given final states infinite
time, with suitable selections of driving nodes and appro-
priate control inputs [11]. Synchronization of CDNs exhibits
the coordination behavior that the states of all entities within
these networks achieve an agreement on some quantities of
interest. Compared with stability analysis of an isolated control
plant, analyzing the emergence of synchronization behavior
for CNSs is much more challenging as the synchronization
process is determined by the evolution of network topol-
ogy as well as the inherent dynamics of individual units
within these network systems [17]–[22]. As a closely related
topic to synchronization of CDNs, consensus of MASs has
recently gained much attention from various research fields,
especially the systems science, control science and engineer-
ing, and electrical engineering communities [22]–[26]. The
containment control problem arises generally in the coordina-
tion of multiple-leader multiple-follower MASs of which the
coordination objective is to regulate the states or outputs of
followers to evolve, respectively, onto some static or dynamic
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regions formed by those of the leaders, which has also received
compelling research attention in the last decade [27]–[29].

Within the context of CNSs, a number of practical fac-
tors may lead to switching phenomena in underlying network
topology, such as the addition or deletion of several links
in evolving networks, external interferences on communica-
tion channels and limited sensing radius for some complex
engineering networks. For example, many modern large-scale
infrastructures can be modeled as CNSs with switching topolo-
gies, such as power grids, which are subject to transmission
line switching [30] or communication line switching [31]
during operations. As the effect of switchings on the evo-
lution of CNSs with switching topologies should be fully
considered, the methodologies that can be utilized to effi-
ciently analyze and control such network systems are often
completely different with those developed for CNSs with
fixed topology [26], [32]–[34]. For example, synchronization-
region-based analysis approaches [17], [35] are powerful tools
for analyzing synchronization of coupling dynamical systems
with fixed topology, such approaches are however invalid to
synchronization of CNSs with switching topologies as there
generally does not exist a common similarity transformation
to simultaneously convert the Laplacian matrices of all pos-
sible interaction graphs (communication topologies) to their
corresponding Jordan canonical forms. Moreover, though a
number of methodologies for analysis and control of switched
dynamical systems have been established in the past few
decades [36]–[40], most of these methodologies can not be
directly applied to CNSs with switching topologies as they do
not scale well with the dimensions of the state space for the
switched systems.

The motivations for writing this survey are manifold.
A number of new methods have been developed in the
literature during the last decade to analyze the network con-
trollability and explore the emergence mechanisms for various
coordination behaviors of CNSs with switching topologies,
which are not covered in existing surveys [41]–[44] and
tutorials [12], [32], [45]. It has been increasingly obvious that
the related fields are mature enough to deserve a survey classi-
fying the existing analytical approaches, the models used and
the results for CNSs with switching topologies from systems
and control perspective. In this survey paper, we offer our
views of present challenges and survey recent advances on
network controllability and coordination behaviors of CNSs
under switching topologies, with emphasis on surveying the
quantitative results and important analysis approaches for
such CNSs. For the purpose of providing a clear and well-
structured survey paper, we carefully classify the existing
analysis methods for coordination and control CNSs with
switching topologies based on some concepts in the field of
analysis and control of switched dynamical systems.

The remainder of this survey paper is structured as fol-
lows. We present some preliminaries on graph theory, switched
dynamical systems and CNSs in Section II. We introduce the
major kinds of models for CNSs with switching topologies,
and then review the corresponding analytical approaches on
controllability, synchronization, consensus, and containment
control of these CNSs in Section III. At last, we conclude

the work and provide some future research directions in
Section IV.

II. PRELIMINARIES

This section recalls some preliminaries on graph theory, fun-
damentals on stability analysis of the fixed point of switched
dynamical systems and some fundamentals on controllability
and coordination of CNSs.

A. Preliminaries on Fixed and Switching Interaction Graphs

The interaction topology of a CNS can be conveniently
described by a graph where the vertices represent the
units within the considered CNS and the links are used
to mimic the interactions among the units. Denote by
G(V, E,A) the digraph associated with the set of vertices
V = { v1, v2, . . . , vN }, a set of links E ⊆ V × V , and an
adjacency matrix A = [ajk]N×N with non-negative elements.
Suppose that ajk > 0, one may denote by ejk = (vk, vj) ∈ E
a link in G(V, E,A) where vk and vj are, respectively, called
the parent and child vertices, and vertex vk is a neighbor of
vertex vj. In the context of CNS, vertex vk is a neighbor of ver-
tex vj implies that vj can get access to the information of vk.
G(V, E,A) is called an undirected graph if A is symmet-
ric. For the sake of simplicity, denote G(V, E,A) by G(A)

if no confusion will arise. The Laplacian matrix L = [ljk]N×N

associated with G(A) is defined as ljk = −ajk, j �= k, and
ljj = ∑N

m=1, m�=j ajm, for j = 1, 2, . . . , N.
To facilitate modeling of CNSs under switching topologies,

we introduce a piecewise-constant function (switching signal)
σ(t) : [0,+∞) �→ S to describe the switching actions among
different topology (graph) candidates where S = {1, 2, . . . , s0}
indicates the index set of all the possible topology candi-
dates. For convenience, denote the set of natural numbers
by N. Assume that [ti, ti+1), i ∈ N, is an infinite sequence
of nonoverlapping and uniformly bounded time intervals with
t0 = 0, ti+1 − ti ≥ τ0 > 0, at which the underlying
interaction topology is fixed. The time sequence t0, t1, . . .
is called the switching sequence, over which the underlying
topology changes. Here, the positive scalar τ0 is usually called
the dwell time (DT) for switching signal σ(t). For notational
brevity, let G(Aσ(t)) be the interaction graph of the consid-
ered CNS with N individual systems at time t. The Laplacian
matrix of G(Aσ(t)) is represented by Lσ(t) = [lσ(t)

jk ]N×N .

B. Preliminaries on Switched Systems

As a special kind of hybrid dynamical systems, switched
systems have been studied for quite some time by researchers
from applied mathematics, systems and control fields [36].
Roughly speaking, a switched system is a dynamical
system that consists of a number of subsystems and a
switching rule that determines switchings among these
subsystems [40]. Before moving forward, the notion of
average DT (ADT) for a given switching signal σ(t) is
given as follows.

Definition 1 [46]: Use Nσ (t, T) to denote the number of
switchings of σ(t) during the time interval (t, T) for any given
T > t ≥ 0. The scalars τa > 0 and N0 ≥ 0 are, respectively,
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called the ADT and chatter bound of σ(t) if the following
inequality holds:

Nσ (t, T) ≤ N0 + (T − t)/τa. (1)

Remark 1: The essence of the ADT condition given in (1) is
that there may exist some consecutive switchings separated by
the time intervals with length less than τa, but the length of the
average time interval between consecutive switchings should
not be less than τa. More precisely, inequality (1) implies that,
for N0 > 0, the average length of time intervals between con-
secutive switchings should not be less than τa by discarding
the first 
N0� switchings, where 
N0� represents the smallest
integer larger than N0 [37], [46]. Note also that N0 = 0 means
that there is no switching over any given time interval.

Switched systems can be categorized into different cat-
egories from different perspectives. For example, switched
systems can be categorized into switched nonlinear and
switched linear systems according to the inherent dynamics
of their subsystems. Furthermore, according to whether there
is an explicit constraint for lower bound of the DT or ADT for
switching signals, switched systems can be divided into slow
switched systems and fast switched systems. Yet, switched
systems can be generally classified into switched systems with
time-dependent switchings and those with state-dependent
switching signals according to whether the switching signals
depend on the internal states of the systems under con-
sideration. Generally, continuous- and discrete-time switched
nonlinear systems can be, respectively, described by

ż(t) = f̃σ(t)(z(t), u(t)) (2)

and

z[k + 1] = f̃σ [k](z[k], u[k]) (3)

of which t ∈ [0,+∞), k ∈ N, σ̃ (t) and σ̃ [k] are the switching
signals such that σ̃ (t), σ̃ [k] ∈ Q with Q = {1, 2, . . . , q0} being
the index set of subsystems, q0 is a given positive integer,
z(t) ∈ R

n and z[k] ∈ R
n are, respectively, the state vec-

tors of the switched systems (2) and (3) with R
n being the

set of n-dimensional real column vectors, u(t) and u[k] are
the control inputs. Particularly, continuous- and discrete-time
switched nonlinear autonomous systems can be, respectively,
described as

ż(t) = f̃σ(t)(z(t)) (4)

and

z[k + 1] = f̃σ [k](z[k]). (5)

Let 0n be the n-dimensional column vector with each ele-
ment being 0. Assume that zeq = 0n is a fixed point for
switched systems (4) and (5). Stability of the zero fixed
point for switched systems (4) and (5) has been exten-
sively studied by using common Lyapunov function (CLF)-
and multiple Lyapunov functions (MLFs)-based approaches.
Note that the stability of the zero fixed point for switched
systems (4) and (5) depends not only on the inherent prop-
erties of subsystems but also upon the switchings deter-
mined by the switching signals. It is also worth noting that
various CNSs can be modeled as such switched systems,

e.g., the CDNs studied in [47] and [48]. Suppose that each
subsystem in switched systems (4) and (5) is a linear and
autonomous system, one may then get the continuous- and
discrete-time switched linear autonomous systems as follows:

ż(t) = Aσ̃ (t)z(t) (6)

and

z[k + 1] = Aσ̃ [k]z[k] (7)

where Ai ∈ R
n×n for each i ∈ Q. Noticeably, 0n is a fixed point

for switched systems (6) and (7). Analytical techniques for sta-
bility of the zero equilibrium for switched system (6) include
the CLF- and MLFs-based approaches while the corresponding
analytical techniques for (7) include the CLF-based approach
and the analytical method based on Schur stability test for
products of system matrices [37], [38], [40]. Specifically,
under the condition that Ai is Hurwitz stable for each i ∈ Q,
it was shown in [36] that the zero fixed point of switched
linear systems (6) is globally asymptotically stable for any
given time-dependent switching signal σ̃ (t) with a sufficiently
large DT τ̃0 such that τ̃0 > supi∈Q{ai/λi}, ai ≥ 0 and λi > 0
satisfying ‖eAit‖ ≤ eai−λit for all t ≥ 0. For switched lin-
ear systems (6) with both Hurwitz stable and unstable linear
time-invariant subsystems, some ADT-based criteria were pro-
vided in [49] to ensure the globally asymptotical stability of
the zero fixed point of such switched dynamical systems under
time-driven switching laws.

Concerning the stability of zero fixed point for fast switched
systems, existing research works are mainly focused on
continuous-time switched systems with time-dependent fast
switchings, see [50]–[52] where some efficient averaging-
based approaches have been proposed. It is noteworthy that the
solutions of switched systems with time-dependent switchings
can be defined in the sense of Carathéodory [37].

C. Fundamentals on CNSs

Today, the study of CNSs pervades all scientific commu-
nities, ranging from statistical physics to applied mathematics
and electronic engineering, and even to neurobiology. Roughly
speaking, a CNS contains a large number of individuals
interconnected by various links among them. Individuals in
different CNSs generally represent different practical or vir-
tual entities and the links among neighboring individuals may
also have quite different meanings under different scenar-
ios. The complexities of such systems are mainly reflected
in the following two aspects. First, most of practical CNSs
contain a huge number of coupled individuals where the tradi-
tional analysis methods fail to deal with the high-dimensional
networking dynamics. Second, various collective dynamics
can be emerged from these systems which cannot be pre-
dicted from the intrinsic properties of individuals. Substantial
research topics within the context of CNSs include how the
underlying topology and the inherent dynamics of individuals
influence the emergence of collective behaviors and how to
efficiently control the collective behaviors of these CNSs.
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1) Controllability of CNSs: One basic issue within the con-
text of control of CNSs is controllability. The controllability of
a CNS describes our ability to control the states of individuals
in the network system from any initial states to any given final
states infinite time. To begin with, we briefly review some fun-
damentals on structural controllability and state controllability
of linear time-invariant system. Consider the following linear
time-invariant system:

ẋ(t) = Ax(t) + Bu(t) (8)

of which A ∈ R
n×n and B ∈ R

n×r are, respectively, the
system matrix and control input matrix, x(t) ∈ R

n denotes
the state vector of (8) and u(t) ∈ R

r is the control input vec-
tor, t ∈ [0,+∞). The linear time-invariant system (8) is state
controllable if, for any given initial condition x(0) = x0 ∈ R

n

and any final state xf ∈ R
n, there exist a control input u(t)

and a finite time instant tf such that x(tf ) = xf . The concept
of structural controllability for linear time-invariant system (8)
was first introduced in [53] where the entries of system matrix
and control input matrix are set as either zero or free param-
eters. Such a system with parameterized system matrix A and
control input matrix B is called structurally controllable if there
is a set of nonzero parameter values of A and B such that
system (8) is state controllable. Recently, many efficient cri-
teria on structural controllability and state controllability of
CNSs have been established, including various controllability
conditions based on the rank analysis for controllability matrix
and different kinds of graphical property-based controllability
criteria [54], [55].

2) Synchronization of CDNs: Achieving synchronization in
CNSs is critical for controlling these CNSs and thus helpful
in dealing with various distributed control problems for practi-
cal network systems. For instance, reaching synchronization of
velocities for all individual agents is a precondition in achiev-
ing flocking in various second-order MASs [56]. In another
instance, the frequency synchronization of multiple generator
units within a power system is one of the most critical issues
in the normal operation of power systems [57]. In addition,
clock synchronization among sensors within wireless sensor
networks is highly desirable in their applications [58]. It is also
worth noting that synchronization problems for CDNs could be
classified as local synchronization problem [8], [18] or global
synchronization problem [19]–[21]. Specifically, the global
synchronization means that the state agreement for all individ-
uals in the networks under consideration can be ensured for
any given initial state conditions, while the local synchroniza-
tion requires that the initial states of individuals be selected
within the attractive region of the specific synchronization
trajectory under consideration.

Generally, a continuous-time CDN of N coupled nodes with
time-dependent switching topologies can be described as [47]

ẋi(t) = f (xi(t), t) + c
N∑

j=1

aσ(t)
ij �(xj(t) − xi(t)) (9)

where the nonlinear function f : R
n × [0,+∞) �→ R

n

describes the inherent (uncoupling) nonlinear dynamics of
node i, Aσ(t) = [aσ(t)

ij ]N×N is the adjacency matrix of network

topology at time t with aσ(t)
ii = 0 for all i = 1, 2, . . . , N, c > 0

is the coupling strength, � ∈ R
n×n is the inner linking matrix.

CDN (9) associated with some given switching signal σ(t) is
said to achieve global synchronization, if

limt→+∞‖xi(t) − xj(t)‖ = 0 ∀ i, j = 1, 2, . . . , N (10)

with ‖ · ‖ being the Euclidean norm, for any given initial
conditions xi(0) ∈ R

n ∀ i = 1, 2, . . . , N. The definition of syn-
chronization for network (9) given by (10) does not concern
about the final synchronization states. However, it is some-
times important to make the states of all individuals in the
considered network to finally converge to some predesigned
trajectory, especially from the viewpoint of controlling vari-
ous complex engineering networks. To ensure the states of all
individuals in network (9) synchronize to some desired states,
a target system is introduced to the network (9) as

ṡ(t) = f (s(t), t) (11)

for some given s(0) ∈ R
n. The pinning-controlled network (9)

with a target system (11) can be generally described as

ẋi(t) = f (xi(t), t) + c
N∑

j=1

aσ(t)
ij �

(
xj(t) − xi(t)

)

− cdσ̂ (t)
i �(xi(t) − s(t)) (12)

where dσ̂ (t)
i is the pinning gain such that dσ̂ (t)

i > 0 when node

i is selected and pinned at time t and dσ̂ (t)
i = 0 otherwise.

CDN (12) associated with some given switching signals σ(t),
σ̂ (t), and a target system (11) is said to achieve global pinning
synchronization, if

limt→+∞‖xi(t) − s(t)‖ = 0 ∀ i = 1, 2, . . . , N. (13)

Here, both σ(t) and σ̂ (t) are time-dependent switching signals.
Under the condition that the nonlinear function f is continu-
ous over t and globally Lipschitz in xi(t) uniformly in t, the
solutions of systems (9) and (12) exist over the time interval
[0, +∞) in the sense of Carathéodory [37].

It is noted that CDNs (9) and (12) can be utilized to model
various practical network systems with switching topologies.

3) Consensus of MASs: As a topic closely related to
the synchronization of CDNs, the consensus of MASs has
aroused tremendous attention from systems and control field
in the past decades [22], [24], [25], [59]. Generally, the first-
order continuous-time MAS consisting of N agents with a
time-dependent switching communication topology could be
described as [25]

ẋi(t) = ui(t) (14)

with consensus protocol (controller) given as

ui(t) = −
∑

j∈Ni(t)

aσ(t)
ij [xi(t) − xj(t)] (15)

of which xi(t) ∈ R
n represents the state vector of agent i

at time t, Aσ(t) = [aσ(t)
ij ]N×N is the adjacency matrix of

the interaction topology at time t, Ni(t) is the set of neigh-
bors of agent i (i.e., the set of agents whose information is
available to agent i). Consensus in the first-order MAS (14)
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is achieved if for any given initial conditions, the follow-
ing holds: limt→+∞‖xi(t) − xj(t)‖ = 0 ∀ i, j = 1, 2, . . . , N.
Correspondingly, the first-order discrete-time MAS consisting
of N agents with a time-varying (switching) communication
topology can be described as [25]:

xi[k + 1] = ui[k] (16)

with consensus protocol given by

ui[k] =
∑

j∈Ni[k]∪{i}
dij[k]xj[k] (17)

of which xi[k] ∈ R
n represents the state vector of agent i

at time point k ∈ N,
∑

j∈Ni[k]∪{i} dij[k] = 1 and for each
j ∈ Ni[k]∪{i}, dij[k] > 0. Similar to the case with continuous-
time dynamics, consensus in MAS (16) is achieved if, for
any given xi[0] ∈ R

n, the following holds: limk→+∞‖xi[k] −
xj[k]‖ = 0 ∀ i, j = 1, 2, . . . , N. More recently, consensus
problems of MASs with inherent linear or nonlinear dynamics
and switching topologies have been formulated and addressed
in [60]–[64].

4) Containment Control of MASs: There may exist multiple
leaders as well as multiple followers in some practical MASs
where the multiple leaders could take the role of guiding all
the followers to move onto some prespecified fixed or time-
varying regions. To take this into account, containment control
of multileader multifollower MASs has been investigated
under various scenarios [27]–[29]. The first-order continuous-
time multileader multifollower MAS consisting of N agents
with a time-dependent switching communication topology and
stationary leaders can be modeled as [28]

ẋi(t) = ui(t), i = 1, 2, . . . , N (18)

with

ui(t) = 0, i ∈ R
ui(t) = −

∑

j∈F⋃R
aij(t)

[
xi(t) − xj(t)

]
, i ∈ F (19)

of which xi(t) ∈ R is the state of agent i, A(t) = [aij(t)]N×N

is the adjacency matrix of the interaction topology at time t
whose elements are piecewise-constants, symbols R and F
represent, respectively, the sets of leaders and followers
such that F⋃R = {1, 2, . . . , N}. Containment in the first-
order continuous-time multileader multifollower MAS (18)
under (19) is guaranteed if for any given initial conditions
xi(0) ∈ R, i ∈ F , the states of all followers converge to the
static region Co{xj(t), j ∈ R}, i.e., the stationary convex hull
spanned by the states of all leaders. Note that containment
control of MAS (18) in the presence of multiple dynamic lead-
ers, containment control of first-order discrete-time multileader
multifollower MAS with stationary and dynamic leaders under
switching interaction topologies were also addressed in [28].
Containment control problems of first-order continuous- and
discrete-time multileader multifollower MAS with high dimen-
sional dynamics were further investigated in [29].

Remark 2: The mathematical definitions for synchroniza-
tion of CDNs and consensus in MASs are exactly similar.
However, some differences between these two topics are
briefly summarized as follows from our own viewpoint.

Fig. 1. Simple illustration for the relationships among CNS with switch-
ing dynamics, CNS with switching topologies, CNS with switching control
parameters, and CNS with switching inherent dynamics.

1) A CDN typically contains a great number of individ-
ual nodes (e.g., the protein interaction networks and the
Internet) while the scale of an MAS may be relatively
quite small (e.g., a team of several robots and a group
of unmanned aerial vehicles).

2) The objective of synchronization control is to make the
states of a large-scale network achieve state agreement
under some given inner linking matrices by selecting
only the coupling strength, while the objective of con-
sensus is to make the states of agents achieve state
agreement by designing the gain matrices as well as the
coupling strength.

3) Significant attention has been paid to revealing the rela-
tionship between the qualitative values (e.g., the cluster-
ing coefficient, the betweenness of vertices, the degree
distribution, and the symmetry) of statistical properties
of network topology and the synchronizability of CDNs
within the context of synchronization in CDNs, while
in the context of consensus of MASs, much attention
has been focused on addressing the relationship between
the algebraic properties (e.g., the algebraic connectivity
for undirected interaction topology and the general alge-
braic connectivity for directed interaction topology) of
interaction topology and the consensusability.

Note also that this article only focuses on surveying some
recent results on the coordination and controllability of CNS
with switching topologies. Actually, a more broad research
field is CNS with switching dynamics that contains CNS with
switching topologies, CNS with switching control parame-
ters and CNS with switching inherent dynamics (as shown
in Fig. 1).

III. COORDINATION AND CONTROL OF CNSS WITH

SWITCHING TOPOLOGIES

A. Controllability

It is noted that research on the controllability of CNSs with
inherent switching dynamics is still at its infancy stage, though
quite a few results on the controllability of CNSs with switch-
ing topologies have been reported in the literature. From the
viewpoint of controlling CNSs with switching topologies, one
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is particularly interested in the effect of switching actions as
well as the connectivity properties of topology candidates on
the controllability of such network systems.

By taking the single leader as an external input to some
informed following agents, state controllability for a class of
discrete-time first-order MASs with switching topologies was
addressed in [65] by using tools from the reachability analy-
sis of the switched linear systems. Then, state controllability
for discrete-time first- and second-order MASs with multiple
leaders and switching topologies were studied in [66]. In [67],
some sufficient criteria for state controllability of discrete-time
first-order MASs with switching topologies and communi-
cation delays were provided. Concerning the MASs with
continuous-time dynamics, state controllability of first-order
MASs with delayed communication and switching topologies
was studied in [68].

Some graph-theoretic characterisations for structural con-
trollability of discrete-time first-order MASs under switching
topologies with a single leader or multiple leaders were,
respectively, provided in [69]. Two frameworks were sug-
gested in [70] to analyze the structural controllability of
switching networks. Based on state controllability analysis
of piecewise linear time-varying systems, structural control-
lability and strong structural controllability for the temporally
switching networks were studied in [71] where it was shown
that the n temporally independent walks are essential to the
structural controllability as well as the strong structural con-
trollability. In [72], a kind of switching controllers with an
appropriately selected location at some specific time points
were introduced to enhance the structural controllability of
a temporally switching network. Structural controllability for
MASs with continuous-time second-order, high-order dynam-
ics, and general linear node dynamics were, respectively,
studied in [73] where it was shown that the structure of union
communication topology plays an important role in struc-
tural controllability of the considered MASs. Controllability
of continuous-time first-order MASs with periodical switch-
ing topologies and switching leaders was analyzed in [74].
More recently, the controllability of first-order MASs with
inherent switching dynamics composed of continuous- and
discrete-time subsystems have been addressed in [75].

B. Synchronization

Within the field of synchronization in CDNs with switch-
ing topologies, a wide range of research has been recently
focused on dealing with issues related to the switchings and
their effects on synchronization.

There has been an increasing recognition that the proper-
ties of each topology candidate and the switching strategy
for topological switching play important roles in achieving
synchronization for CDNs with switching topologies. The
analytical approaches for synchronization of continuous- and
discrete-time CDNs with switching topologies are gener-
ally different. Mathematically, the continuous-time CDN with
switching topologies is a special kind of those with time-
varying topology. However, it is preliminarily assumed in some
existing works on synchronization of continuous-time network

systems with time-varying topology that the connection links
evolve continuously over time with a known bound for the
changing rate [76] or with a time-varying Laplacian matrix
being simultaneously diagonalizable [77]. Thus, the techniques
developed in these works to solve the synchronization problem
of CDNs with special time-varying topologies are generally
hard to apply to that with switching topologies, especially to
the case with directed switching topologies.

Specifically, averaging-based approaches were developed to
analyze synchronization of continuous-time CDNs with fast
switching topologies [78], [79] while MLFs-based approaches
were developed to analyze synchronization of continuous-time
CDNs with slow switching topologies (especially for the case
with directed switching topologies) [47]. Furthermore, com-
mon Lyapunov functional (CLFL)- and multiple Lyapunov
functionals (MLFLs)-based approaches were usually employed
to analyze synchronization of continuous-time CDNs with
switching topologies under delayed or sampled-data cou-
pling [80]–[82]. CLFL-based approaches are applicable only
to some special continuous-time CDNs with switching topolo-
gies, such as each possible topology candidate is undi-
rected [81], [83], [84]. Particularly, the analytic methods
for synchronization of continuous-time CDNs with switching
topologies can be summarized as follows.

1) Averaging-Based Approaches: In [78], synchronization
of small-world networks with fast on-off switching links
was studied where it was shown that the probability
p of switchings for shortcut in blinking CDN model
plays a critical role in guaranteeing synchronization.
In [79], local synchronization of a kind of complex
networks with fast switching undirected topologies was
addressed where it was shown that the time-average
graph Laplacian is a synchronizability indicator.

2) CLF- and CLFL-Based Approaches: In [83], adaptive
synchronization of continuous-time CDNs with undi-
rected switching topologies and a target node was
studied by using CLF-based approach. Synchronization
of CDNs with simultaneously diagonalizable Laplacian
matrices and delayed coupling was studied in [80] by
constructing CLFL. Some efficient CLF-based crite-
ria for local synchronization of CDNs with undirected
switching topologies were provided in [84]. A CLFL
was constructed and utilized in [81] to investigate the
synchronization problem of a general Kuramoto-type
CDN with undirected switching and regular connection
graphs. Then, the CLFL-based approach was adopted
in [82] to study the pinning synchronization of CDNs
with sampled-data coupling. Both local and global syn-
chronization of CDNs with undirected switching topolo-
gies were studied in [85] via constructing CLF. It was
shown in [85] that the time average of the second small-
est eigenvalues of Laplacian matrices associated with
topology candidates plays a key role in achieving syn-
chronization. Globally almost sure synchronization of
a class of CDNs with stochastically switching topolo-
gies was addressed in [86] by constructing CLF and
utilizing tools from stochastic stability theory. A gen-
eral class of CLF was constructed in [87] to analyze
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synchronization of CDNs with node dynamics satisfy-
ing a global Lipschitz condition under directed switching
topologies. By showing that the maximum values of
Euclidean norm of relative errors between neighbor-
ing nodes have contraction property, synchronization of
CDNs with sequentially connected topology was studied
in [88]. By transforming the agents’ dynamics into unit
vectors’ dynamics on a sphere of suitable dimension, a
kind of CLF was developed in [89] to investigate the
attitude synchronization problem of a group of agents
in SO(3) under switching strongly connected directed
graphs.

3) MLFs- and MLFLs-Based Approaches: In [90], MLFLs-
based methods were developed to solve the local and
global exponential synchronization of CDNs with undi-
rected switching topologies and delayed coupling where
some ADT-based criteria were derived and discussed.
By utilizing tools from nonsingular M-matrix theory,
a class of multiple quadratic-form Lyapunov functions
was proposed in [47] to study the pinning synchroniza-
tion problem of CDNs with directed switching topolo-
gies. The stochastic MLFs-based approach was adopted
in [91] to solve the local synchronization problem of
CDNs with randomly fast switching topologies.

For discrete-time CDNs with switching topologies, global
synchronization for nonautonomous linear CDNs with ran-
domly switching topologies was studied in [92] by developing
a kind of approaches from ergodicity theory for nonhomo-
geneous Markovian chains. A method based on the Hajnal
diameter of infinite coupling matrices was proposed in [48] to
analyze the local synchronizability of a class of discrete-time
CDNs with directed switching topologies. Synchronization of
discrete-time CDNs with undirected switching topologies and
impulsive controller was studied in [93] by constructing MLFs.
Globally almost sure synchronization for discrete-time CDNs
with switching topologies was investigated in [94] by using
super-martingale convergence theorem.

C. Consensus

Consensus of MASs has recently attracted increasing atten-
tion from different scientific fields [2]. Many research works
on consensus of MASs under switching topologies are moti-
vated by result of heading consensus on Vicsek’s model [95].
The Vicsek’s model is an efficient discrete-time model for
analyzing the emergence of heading consensus in a group of
autonomous particles(agents) moving in the plane with the
common velocity v > 0 but different headings θi(k) where the
dynamic evolution of agent i is described by

xi[k + 1] = xi[k] + v(cos(θi[k]), sin(θi[k]))T

θi[k + 1] = 〈θi[k]〉r + �θi[k] (20)

where xi[k] ∈ R
2 denotes the position vector of agent i at

time point k, 〈θi[k]〉r represents the average headings of the
velocities of agent i and its neighbors defined as

〈θi[k + 1]〉r = arctan

(∑
j∈Ni(k) sin(θj[k])

∑
j∈Ni(k) cos(θj[k])

)

with Ni(k) = {j : ‖xi[k] − xj[k]‖ < r} for some given
r > 0, and �θi[k] being a noise variable. Numerical sim-
ulations show that headings consensus can be emerged in
network systems (20) with a relatively high agent density and
small noise [95]. Unfortunately, it is still an open issue how
to theoretically explain the emergence of headings consensus
in network systems (20) due to the state-dependent topology
switching and the inherent nonlinear dynamics of (20). By
assuming that the switching mode of underlying topology is
time-controlled switching, some rigorous analysis on heading
consensus of the linearized Vicsek’s model in the absence of
noise was provided in [22] and [23]. Since then, the consensus
of MASs with switching topologies has attracted increasing
attention from a wide range of scientific interests.

1) Consensus of First-Order MASs With Switching
Topologies: In the year of 2004, the consensus problem of
continuous-time first-order (integrator-type) MASs [defined
by (14)] with directed switching and balanced topology
was formulated and studied in [24]. Due to the balanced
property of each possible topology candidate, a CLF was
constructed in [24] for analyzing the convergence behaviors of
disagreement vector. Consensus of continuous- and discrete-
time first-order MASs with directed switching topologies
were further studied in [25] where each possible topology
candidate is not required to be balanced. Note that in [25],
the consensus problem of discrete-time first-order MASs
was studied by using the convergence property of infinite
products of stochastic matrices [96] while the consensus
problem of continuous-time first-order MASs was studied
by transforming such a problem to that of a corresponding
discrete-time first-order MASs and then solved by using the
tools for consensus of discrete-time first-order MASs. Some
interesting issues on consensus of a class of first-order MASs
with switching topologies were further addressed in [97] and
[98] by using graphical approaches.

In [99], the following protocol was proposed for
system (14):

ui(t) = −
∑

j∈Ni(t)

aij(t)[xi(t − τ(t)) − xj(t − τ(t))] (21)

where Ni(t) is the set of neighbors of agent i at time t,
τ(t) ≥ 0 is the time-varying delay. By employing a CLFL-
based approach, it was proven in [99] that average consensus
in system (14) with protocol (21) can be achieved if each
topology candidate is strongly connected and balanced, and
some linear matrix inequalities hold. The fact that there does
not exist a common quadratic Lyapunov function for analyzing
consensus of some discrete-time first-order MASs with switch-
ing topologies was pointed out in [100]. Note that most of the
aforementioned results are mainly concerned with the con-
sensus of first-order MASs with deterministically switching
topologies. However, considering the underlying topology may
randomly switch among a set of topology candidates in some
practical applications, there have been a number of results
focusing on the consensus of first-order MASs with randomly
switching topologies [101]–[104]. Specifically, without assum-
ing that adapted sequences describing the switching actions
are stationary or ergodic, almost sure consensus of first-order
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discrete-time MASs with stochastic switching topologies and
time delays was studied in [104].

2) Consensus of Second-Order MASs With Switching
Topologies: Continuous- and discrete-time second-order
MASs can be respectively described as

ẋi(t) = vi(t)

v̇i(t) = ui(t) (22)

and

xi[k + 1] = xi[k] + Tvi[k]

vi[k + 1] = vi[k] + Tui[k] (23)

where xi(t) (resp. xi[k]) and vi(t) (resp. vi[k]) are, respec-
tively, the position and velocity states of agent i at time point t
(resp. k), ui(t) and ui[k] are, respectively, the consensus proto-
cols of systems (22) and (23), T > 0 represents the sampling
period.

In [105], the following consensus protocol is proposed
for (22):

ui(t) = −
N∑

j=1

gijkij[(xi(t) − xj(t)) + γ (vi(t) − vj(t))] (24)

of which kij and γ are positive scalars, G = [gij]N×N is a
(0, 1)-matrix with zeros on its diagonal and gij = 1 if there is
a directed link from j to i. Based on the stability results for
switched systems (6) provided in [36], some DT-based crite-
ria for consensus of (22) under directed switching topologies
were established in [105] where it was revealed that consen-
sus in (22) with directed switching topologies can be achieved
if each topology candidate contains a directed spanning tree
and the DT for switchings among different topology candi-
dates is larger than a threshold value. In [106], the following
consensus controller was designed for MAS (22):

ui(t) = −κvi(t) − bi(t)(xi(t) − x0(t))

−
∑

j∈Ni(t)

aij(t)(xi(t) − xj(t)) (25)

where x0(t) represents the state vector of the single leader,
bi(t) > 0 if the state information of the leader is avail-
able to agent i at time t and bi(t) = 0 otherwise, notation
Ni(t) represents the set of agents whose information is avail-
able to agent i at time t. With the condition that the graph
describing the interaction relationships among followers is
undirected, it was proven in [106] by constructing a CLF that
leader-following consensus in (22) with controller (25) can be
guaranteed if the interaction graph jointly contains a directed
spanning tree. Leader-following consensus of MAS (22) with
switching jointly reachable interconnection and transmission
delays was addressed in [107] by designing the switching laws
among topology candidates where the dynamics of the leader
are described by first-order integrator. Note that the switching
mode for topology evolution of the MASs studied in [107] is
a kind of state-dependent switching. The leaderless consensus
of (22) with undirected switching topologies was investigated
in [108] where the following controller was proposed:

ui(t) = −k1vi(t) +
∑

j∈Ni(t)

aij(t)(xj(t − τ) − xi(t − τ)) (26)

where k1 > 0 is a fixed feedback gain, τ > 0 repre-
sents the time-delay, A(t) = [aij(t)]N×N is the adjacency
matrix of the switching graph. By constructing a CLFL,
it was proven in [108] that consensus of (22) with proto-
col (26) can be ensured if the underlying interaction graph
is jointly connected. Leaderless consensus of MAS (22) with
protocol (26) under directed switching topologies was fur-
ther studied in [109] and [110]. Note that there is no specific
restriction for the value of the DT for switching signals in
the consensus criteria provided in [106], and [108]–[110] as
CLF- and CLFL-based approaches were, respectively, adopted
in [106], [108], and [110]. In [111], the following intermittent
communication-based protocol was proposed for MAS (22):

ui(t) =
{

−α
∑N

j=1 lijxj(t) − β
∑N

j=1 lijvj(t), t ∈ T

0, t ∈ T
(27)

where L = [lij]N×N is the Laplacian matrix of the strongly
connected interaction graph, T represents the union of time
intervals on which the agents could communicate with their
neighbors and T represents the union of the time intervals
on which the agents could not communicate with their neigh-
bours. The underlying communication topology of the closed-
loop MAS (22) with protocol (27) can be seen as a directed
switching topologies with two topology candidates: 1) a strong
connected graph and 2) the null graph. Some sufficient criteria
for consensus of MAS (22) with protocol (27) were derived
in [111] by constructing a CLF. Psillakis [112] proposed the
following protocol for MAS (22):

ui(t) = bi{κRi(t)cos(Ri(t))[ρvi(t) + λri(t)]} (28)

where bi are the unknown control gains, Ri(t) are PI terms
depend on both the absolute position and velocity states of
agent i as well as some relative position and velocity states
between agent i and its neighbors, κ , ρ, and λ are positive
scalars. Under the assumption that each topology candidate is
balanced and strongly connected, it is shown that consensus in
MAS (22) with protocol (28) can be achieved under switching
topologies with any given positive DT. In [113], consensus
of MAS (22) with sampled measurement output-based pro-
tocol and undirected switching topologies was addressed by
proposing the following protocol:

ui(t) = −
N∑

j=1

aij[r]
(
k1pij[r] + k2pij[r − 1]

)
, t ∈ [tr, tr+1)

of which tr represents the rth sampling time point,
tr+1 − tr = T with some T > 0, pij[r] = xi[r] − xj[r], r ∈ N.
Consensus of MAS (22) under pulse-modulated intermittent
communication and directed switching topologies was studied
in [114] by designing the following protocol:

ui(t) = −
⎡

⎣αvi(tk) + β
∑

j∈Ni

lij(k)
(
xj(tk) − xi(tk)

)
⎤

⎦

× a(t − tk), t ∈ [tk, tk+1)

where {tk}k∈N is the sampling instant sequence satisfying
tk+1 − tk = h > 0, L(k) = [lij(k)]N×N is the Laplacian matrix
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of the switching graph at time tk and a(t) > 0 is a piecewise
continuous scale pulse function.

Casbeer et al. [115] studied consensus of MAS (23) with
the following protocol:

ui[k] = −
N∑

j=1

aij[k + 1]
[(

xi[k] − xj[k]
)

+ γk
(
vi[k] − vj[k]

)]
(29)

of which γk > 0, for k ∈ N. By assuming that each topology
candidate is strong connected and balanced, some DT-based
criteria for consensus of MAS (23) with protocol (29) were
provided in [115]. Consensus of MAS (23) with nonuni-
form time-delays was investigated in [116] by proposing the
following protocol:

ui[k] = −p0vi[k] + p1

N∑

j=1

aij[k]
(
xj
[
k − τij

]− xi[k]
)

+ p2

N∑

j=1

aij[k]
(
vj
[
k − τij

]− vi[k]
)

(30)

of which τij is a non-negative integer representing the commu-
nication time delay from agent j to agent i, p0, p1, and p2 are
positive scalars. By utilizing the convergence property of infi-
nite products of stochastic matrices, it was shown in [116] that
consensus in the MAS under consideration can be guaranteed
if the joint graph of all possible interaction graphs candidates
frequently contains a directed spanning tree. In [117], con-
sensus of the following discrete-time second-order MAS with
heterogeneous sampling periods was studied:

xi(tk+1) = xi(tk) + hkvi(tk)

vi(tk+1) = vi(tk) + hk

⎡

⎣α

N∑

j=1

aij(tk)
(
xj(tk) − xi(tk)

)

+ β

N∑

j=1

aij(tk)
(
vj(tk) − vi(tk)

)
⎤

⎦ (31)

where α and β are positive scalars, hk is the kth sampling
period. By assuming that each possible topology is fully con-
nected, some consensus criteria for consensus of second-order
MAS (31) were provided by the approach of estimating the
eigenvalues of stochastic matrices. Lin et al. [118] studied con-
sensus of MAS (23) with nonconvex velocity and control input
constraints under directed switching topologies. It was shown
in [118] that consensus can be achieved if the joint graph of
the switching communication graphs has a directed spanning
tree among each time interval of certain bounded length.

3) Consensus of MASs With General Linear Node
Dynamics and Switching Topologies: The continuous-time
MAS with general linear node dynamics is described as

ẋi(t) = Axi(t) + Bui(t)

yi(t) = Cxi(t) (32)

where xi(t) ∈ R
n, and yi(t) ∈ R

q are, respectively, the state
and output vectors of agent i, A ∈ R

n×n and B ∈ R
n×m are,

respectively, the system and control input matrices, C ∈ R
q×n

is the output matrix, ui(t) is the protocol to be designed. It
is worth noting that system (32) represents the MAS with
general linear node dynamics, which includes those with first-
order, second-order, and high-order integrator-type dynamics
as special cases. For example, system (32) will reduce to the
nth order integrator-type MAS if the system parameters are
selected such that

A =
[

0n−1 In−1

0 0T
n−1

]

, B =
[

0n−1
1

]

. (33)

Consensus of high-order integrator-type MAS under
directed switching topologies was studied in [119] where the
following state-feedback-based protocol was designed:

ui(t) = K1xi(t) +
∑

j∈Ni(σ (t))

α
ij
σ(t)K2

(
xi(t) − xj(t)

)
(34)

of which Ni(σ (t)) is the set of neighbors of agent i at time t,
α

ij
σ(t) represents the communication weight associated with

the communication link from agent j to agent i, K1 and K2
are two feedback gain matrices with appropriate dimensions
to be designed. By employing a carefully selected trans-
formation, consensus problem of the closed-loop high-order
MAS considered in [119] is transformed to that of first-
order MAS under directed switching topologies. It has been
proven in [119] that consensus can be ensured for MAS with
high-order integrator-type dynamics if K1 and K2 are suit-
ably selected and the underlying topology uniformly jointly
contains a directed spanning tree. Furthermore, consensus
of high-order integrator-type dynamics with output-feedback-
based protocol under directed switching topologies was also
studied in [119].

In [120], leader-following consensus of MAS (32) with
the following state-feedback-based protocol under directed
switching topologies was studied:

ui(t) = cF
N∑

j=1

aσ(t)
ij

(
xi(t) − xj(t)

)
(35)

where c is a positive scalar, Aσ(t) = [aσ(t)
ij ]N×N is the adja-

cency matrix of communication graph Gσ(t). By assuming that
the single leader (labeled as agent 1) in MAS (32) has no
neighbor, one gets that the Laplacian matrix Lσ(t) associated
with the switching graph Gσ(t) can be partitioned as

Lσ(t) =
[

0 0T
N−1

ησ(t) L̂σ(t)

]

. (36)

Under the assumption that each possible topology candidate
has a directed spanning tree rooted at the leader agent, one gets
that L̂σ(t) is a nonsingular M-matrix which is also diagonally
dominant. Then, the following MLFs were designed in [120]:

W(t) = ϕT(t)
(
�σ(t) ⊗ S−1

)
ϕ(t) (37)

of which ϕi(t) = xi(t) − x1(t), i = 2, 3, . . . , N, ϕ(t) =
(ϕT

2 (t), ϕT
3 (t), . . . , ϕT

N(t))T , ξσ(t) = (ξ
σ(t)
1 , . . . , ξ

σ(t)
N−1)

T =
(̂Lσ(t))−T1N−1, and �σ(t) = diag{ξσ(t)

1 , . . . , ξ
σ(t)
N−1}. It was

shown in [120] that leader-following consensus can be ensured
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if DT for switchings among different topology candidates is
larger than a derived positive scalar.

Wen et al. [60] investigated the leader-following consensus
problem of MAS (32) with a single leader and control input
missing, where the following state-feedback-based protocol
was proposed:

ui(t) =
{

αF
∑N

j=1 aσ(t)
ij

(
xj(t)−xi(t)

)
, t ∈

[
tk, thk−1

k

)

0m, t ∈ [thk−1
k , tk+1), k ∈ N

(38)

where α > 0 represents the coupling strength, F ∈ R
m×n is the

feedback gain matrix to be designed, Aσ(t) = [aσ(t)
ij ]N×N is the

adjacency matrix of communication graph Gσ(t), the underly-
ing topology switches over time points tk for k ∈ N, the control
input is assumed to be missing over time interval [thk−1

k , tk+1).
By utilising tools from the nonsingular M-matrix theory, a
class of MLFs were constructed to study the leader-following
consensus problem of MAS (32) under protocol (38). Then,
two new kinds of MLFs were developed in [121] to deal
with the leader-following consensus problem of MAS (32)
with, respectively, a single autonomous and nonautonomous
leader under directed switching topologies. The MLFs uti-
lized in [121] were constructed by solving some linear matrix
inequalities and performing an optimization algorithm. Under
the circumstance with an autonomous leader, it was verified
that the criteria derived in [121] for leader-following consen-
sus are less conservative than most existing ones established
by directly constructing the M-matrix-based MLFs. An out-
standing yet challenging issue is how to construct some new
kinds of MLFs for MASs with inherent nonlinear dynamics
and directed switching topologies to yield some less conser-
vative criteria (compared with those derived by constructing
MLFs based on tools from nonsingular M-matrix theory) for
leader-following consensus.

Under the condition that each possible interaction graph has
a directed spanning tree, leaderless consensus of MAS (32)
with state-feedback-based protocol and directed switching
topologies was studied in [61]. By proposing a state transfor-
mation, leaderless consensus problem of the MAS considered
in [61] is transformed to the global stability problem of the
following switched dynamical system about its zero fixed
point:

ė(t) =
[
IN−1 ⊗ A − α

(
�L(σ (t))� ⊗ BK

)]
e(t) (39)

of which α > 0 is a positive scalar, L(σ (t)) is the Laplacian
matrix of the coupling topology at time t, �L(σ (t))� is an

antistable matrix with � = [IN−1,−1N−1] and � =
[

IN−1

0T
N−1

]

.

Then, a kind of MLFs was proposed based on the antistable
property of �L(σ (t))� to seek some sufficient criteria for
achieving leaderless consensus in MAS under consideration.
It is remarkable that the labels of the roots for spanning trees
of different topology candidates do not need to be the same
in the MAS model considered in [61].

Under the conditions that (A, B) is controllable and the
inherent linear dynamics of each agent is marginally sta-
ble, both the leaderless consensus and the leader-following

consensus problems for linear MASs (32) under switching
communication topology were addressed in [62] by using a
generalized Barbalat’s Lemma. For the leaderless case, it was
shown in [62] that consensus can be reached if the underlying
undirected topology is jointly connected and the consensus
protocol is suitably designed. Under the condition that the
communication topology among the followers is undirected
all the time and the communication topology for the leader-
following MASs jointly contains a directed spanning tree
rooted at the leader, it was proven in [62] that leader-following
consensus can be ensured under some appropriately designed
protocols. With the conditions that the system matrix A does
not have positive real part eigenvalue and each possible sub-
graph describing the topology among followers is undirected,
event-triggered leader-following consensus problem for linear
MASs (32) under switching communication topologies was
addressed in [122] by utilising tools from CLF-based stability
analysis theory and Cauchy convergence criterion.

In [123], leaderless consensus of single input linear MASs
with undirected switching topologies was investigated by using
the CLF-based approach. Under the assumption that the inher-
ent linear dynamics of agents are stabilizable and each possible
topology candidate is undirected and connected, it was proven
in [123] that consensus in the closed-loop MASs with an arbi-
trarily given switching signal for underlying topology can be
achieved if the feedback gain matrix of the consensus pro-
tocol is suitably designed. Leaderless consensus of multiple
input linear MASs with directed switching topologies as well
as its disturbance rejection issue were addressed in [124] by
assuming that the possible strongly connected topology graphs
share a common left eigenvector of the Laplacian matrices
associated with zero eigenvalue.

Note that most of the aforementioned criteria for con-
sensus of general linear MASs with (directed) switching
topologies are derived based on the assumption that the
switching frequency among different topology candidates is
sufficiently slow, i.e., the DT for switchings among dif-
ferent interaction graph candidates should be larger than a
positive quantity depending on both the inherent dynamics
of agents and the properties of interaction graph candidates
(see [60], [61], [120]). However, in some cases, it is possible
to achieve consensus in general linear MASs with fast switch-
ing topologies [125], [126]. By using tools from the stability
of time-varying differential equations, the leader-following
consensus of general linear MASs with fast switching topolo-
gies was studied in [125]. Under the assumption that the
inherent linear dynamics of agents are stabilizable and the
interaction graphs among followers are undirected, it was
shown in [125] that leader-following consensus in linear MASs
with fast switching topologies can be ensured if the underlying
interaction graph jointly has a directed spanning tree rooted
at the leader and the protocols are appropriately designed.
In [126], the leaderless consensus of general linear MASs
with output-coupling under fast switching directed topologies
was studied by using averaging theory. It has been shown
in [126] consensus in the linear MASs with output-coupling
can be guaranteed under sufficiently fast switching topologies
if the consensus problem of the MASs with the corresponding
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fixed averaging network topology can be solved via designing
output-coupling protocols.

Compared with consensus of the continuous-time general
linear MASs with switching topologies, the consensus of
discrete-time general linear MASs with switching topologies
has received relatively less attention in the last years. In [127],
with the assumption that the system matrix of the inherent
dynamics of agents is neutrally stable, both leaderless con-
sensus problem and leader-following consensus problem of
discrete-time general linear MASs under switching topologies
were studied based on a generalized version of Barbalat’s
lemma. By assuming that the inherent linear dynamics of
each agent are controllable and observable, output consen-
sus problem for a class of discrete-time heterogeneous linear
MASs with directed switching topologies and time delays
was investigated in [128] by designing a kind of distributed
predictor-based controller.

Most of the above-mentioned works focused on address-
ing consensus problem of linear MASs with deterministically
switching topologies. Note that the consensus of linear MASs
with randomly switching topologies has also been consid-
ered in [129] and [130]. Specifically, consensus problems of
continuous- and discrete-time linear MASs with Markovian
switching topologies were studied in [129] by constructing
stochastic MLFs. Then, the robust consensus of continuous-
time linear MASs with Markovian switching topologies sub-
ject to unknown jumping modes was investigated in [130].

4) Consensus of MASs With Nonlinear Dynamics and
Switching Topologies: In [63], leader-following consensus
of MASs with Lipschitz-type nodes and directed switch-
ing topologies was investigated where the dynamics of the
followers and the leader are described, respectively, by

ẋi(t) = Axi(t) + Cf (xi(t), t) + Bui(t) (40)

of which i = 2, 3, . . . , N, and

ẋ1(t) = Ax1(t) (41)

where xi(t) ∈ R
n is the state vector of agent i (i = 1, 2, . . . , N),

A, B, and C are constant real matrices with compatible dimen-
sions, f is a nonlinear function satisfying the Lipschitz con-
dition. To achieve leader-following consensus, the following
relative-state-based protocol was designed in [63]:

ui(t) = αBF
N∑

j=1

aσ(t)
ij

(
xj(t) − xi(t)

)
(42)

of which α is a positive scalar, Aσ(t) = [aσ(t)
ij ]N×N is the

adjacency matrix of communication graph Gσ(t) describing the
communication structure among the N agents. Under the con-
dition that each possible topology contains a directed spanning
tree with the leader as the root, distributed leader-following
consensus of MASs with leader given by (41) and follow-
ers given by (40) under protocol (42) were studied in [63].
Then, leader-following consensus for MASs with Lipschitz-
type nodes and directed switching topologies was addressed
in [131] by designing observer-type protocols where only
the relative outputs between neighboring agents are avail-
able. By assuming that each possible subgraph describing the

interaction relationships among followers is undirected and the
switching graph containing both the leader and followers is
jointly connected, leader-following consensus for MASs with
leader given by (41) and followers given by (40) was studied
in [132] by using a CLF-based approach. Distributed output
leader-following consensus problem was studied in [64] for
a class of nonlinear MASs where the dynamics of followers
and the single leader are heterogeneous. With the condi-
tion that the θ -digraph containing both the followers and the
leader jointly has a directed spanning tree rooted at the leader,
some new sufficient output tracking criteria were obtained and
analyzed in [64]. Under the assumption that each possible
topology candidate has a directed spanning tree rooted at the
leader, practical leader-following consensus for heterogeneous
MASs with a high-dimensional leader and unknown follow-
ers’ dynamics was studied in [133] by constructing MLFs for
the tracking error systems. Then, in [134], leader-following
consensus for a class of first-order MASs with nonlinear
dynamics and event-triggered communication was investigated
where the underlying topology is assumed to switch among a
set of directed graphs with each having a directed spanning
tree rooted at the leader. Leader-following attitude consensus
for a class of multiple rigid spacecraft systems with directed
switching topologies was studied in [135] by developing tools
for convergence analysis of linear time-varying system and
constructing a kind of CLF.

Leaderless consensus of MASs with Lipschitz-type dynamic
agents [as shown in (40)] and undirected switching topologies
was addressed in [136]. By utilizing a CLF-based approach, it
was shown in [136] that leaderless consensus in the considered
nonlinear MASs can be guaranteed under a jointly connected
topology if some linear matrix inequalities are satisfied and
the protocol is suitably designed. Leaderless guaranteed-cost
consensus for MASs with Lipschitz-type dynamic agents over
undirected switching topologies was studied in [137]. Without
assuming that the inherent nonlinear dynamics of agents sat-
isfy the Lipschitz condition, leaderless consensus of a class of
second-order nonlinear MASs under jointly connected topolo-
gies was studied in [138] by using tools from input-to-state
stability of switched systems.

Consensus problems of first-order and second-order MASs
with Lipschitz-type nonlinear dynamics and directed switching
topologies were, respectively, studied in [139] and [140] by
designing rules for determining the switchings among different
topology candidates.

Remark 3: Research on consensus of MASs with nonlin-
ear dynamics with switching topologies is still at its infancy
stage as most of the existing results are generally assumed that
the inherent nonlinear dynamics are Lipschitz-type. It hoped
that the efficient tools developed for analyzing and control-
ling nonlinear plants, e.g., the neural network-based control
method [141], [142], will promote the advances of research
on this topic in the near future.

D. Containment Control

Containment control of first-order multileader multifollower
MASs (18) with directed switching topologies was addressed
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in [28]. Specifically, the following control laws were designed
in [28] for each follower i, i ∈ F , to achieve containment under
the cases with, respectively, stationary and dynamic leaders:

ui(t) = −
∑

j∈F⋃R
aij(t)

[
xi(t) − xj(t)

]
(43)

ui(t) = −α
∑

j∈F⋃R
aij(t)

[
xi(t) − xj(t)

]

− βsgn

⎧
⎨

⎩

∑

j∈F⋃R
aij(t)

[
xi(t) − xj(t)

]
⎫
⎬

⎭
(44)

of which A(t) = [aij(t)]N×N is the adjacency matrix of the
interaction graph which jointly has a united directed span-
ning tree (i.e., for each follower i, i ∈ F , there exists at
least one leader j, j ∈ R such that there is a directed path
from leader j to the follower i) as MASs evolve with time,
α = 1 and β should be larger than the maximum abso-
lute values of the external inputs acting on the leaders, and
the dynamics of each agent are one-dimensional systems.
Furthermore, the cases with discrete-time dynamics were also
addressed in [28]. Note that the analysis approach adopted
in [28] is a CLF-based approach. Containment control of first-
order high-dimensional multileader multifollower MASs under
directed switching topologies was further studied in [29]. It
was revealed in [28] that the states of the followers under
control law (43) will converge to the convex hull spanned
by those of the stationary leaders if the union graph for the
underlying directed switching graph frequently has a united
directed spanning tree. It was interestingly found that the states
of followers might not converge onto the dynamic convex
hull formed by those of the dynamic leaders under control
law (44) but will converge onto the dynamic minimal hyper-
rectangle that contains the dynamic leaders. It is worth noting
that there is no constraint on the DT of switchings among
different topology candidates in the containment criteria pro-
vided in [28] and [29]. By using LaSalle’s Invariance Principle
(LaSalle’s IP) for switched systems, containment control for
first-order multileader MASs with undirected switching com-
munication topologies among followers was studied in [143].
Containment control for a kind of second-order MAS in the
presence of multiple leaders with random switching topolo-
gies was investigated in [144]. By developing tools from
stochastic process theory and convex analysis, some neces-
sary and sufficient conditions were derived in [144] to ensure
that the dynamic following agents converge asymptotically
to the static convex leader set in the almost sure conver-
gence sense. Then, containment control for continuous-time
first-order multileader multifollower MASs in the presence of
interactive leaders and directed switching topologies was stud-
ied in [145]. By using the convergence property of infinite
products of stochastic, indecomposable, and aperiodic (SIA)
matrices, it was shown in [145] that the states of leaders will
converge to the desired formation while the states of followers
will move onto the convex hull formed by those the leaders
under directed switching topologies. The summary of analysis
approaches for containment control of multileader MASs is
illustrated in Fig. 2.

Fig. 2. Analysis approaches for containment control of multileader MASs.

IV. CONCLUSION

We have surveyed some recent developments on coordina-
tion and control of CNSs with switching topologies. However,
this survey is by no means complete. Note also that there are
still many interesting and yet critical issues concerning CNSs
with switching topologies the deserve further study although
a variety of efficient tools have been successfully developed
to solve various challenging problems in this active research
field. Some interesting yet important future research issues are
provided as follows.

1) Bridging the Gap Between Consensus/Synchronization
Under Fast Switching Topologies and That Under Slow
Switching Topologies: Consensus or synchronization of
CNSs under fast switching topologies has been studied
from averaging theory while that with slow switching
topologies has been generally studied from MLFs-based
approaches. An interesting topic is to provide a uni-
fied approach to deal with consensus/synchronization
problem under fast switching topologies and slow
switching topologies. Another interesting problem is
to study how to reduce the conservatism of the con-
sensus/synchronization criteria derived by tools from
averaging theory or MLFs-based stability analysis.

2) Distributed Optimization of CNSs With Switching
Topologies: Distributed optimization problem of CNSs
with fixed topology has been studied under various
scenarios where only the information about local objec-
tive function and relative state (or output) information
between its own and the neighbors’ are available to
each individual. An interesting yet challenging problem
is how to efficiently solve the distributed optimization
problem over CNSs with switching topologies.

3) Finite-Time Coordination Control of CNSs With
Switching Topologies: To date, many distributed pro-
tocols have been developed to solve asymptotical
coordination problems (including consensus, synchro-
nization, rendezvous, and flocking problems) of CNSs
with switching topologies. However, in some practical
applications, it is desirable to design distributed pro-
tocols for CNSs such that the coordination objectives
can be completed in a finite time. For CNSs with fixed
topology, various efficient protocols have been designed
based on tools from sliding mode control theory to
complete the goal of finite-time coordination. However,
it is interesting but challenging to see how to design
sliding mode controller-based protocols for CNSs with
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switching topologies such that the goal of finite-time
coordination can be guaranteed.

4) Resilience Analysis and Control of Complex Cyber-
Physical Networks: Most of the units in various network
infrastructures are cyber-physical systems in the era of
the Internet of Things. Complex cyber-physical network
as a next-generation of CNS has recently received a dras-
tic attention. Any successful cyber or physical attacks on
complex cyber-physical networks may introduce unde-
sired switching dynamics (e.g., loss of links) to the
operation of these networks. In this context, resilience
analysis and control of complex cyber-physical networks
become increasingly important and thus deserve future
study.

We sincerely hope that the present survey paper stimulates
further research on the analysis and synthesis of CNSs with
switching topologies, both on the theoretical side and in the
practical applications.
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